Table of Contents

SOM

Articles / tuto utilisés :

Principe

  1. Initialiser les noeuds avec des poids aléatoires (les coordonées des noeuds dans ce cas)
  2. Sélectionner une position dans l'espace à discrétiser
  3. Chercher le noeud le plus près de cette position (neurone gagnant)
  4. Mettre son poids à jour (le rapprocher de la donnée d'entrée)
  5. Mettre les poids de ses voisins à jour (un peu moins que le gagnant)
  6. Réduire petit à petit l'intensité de la mise à jour
  7. Réduire petit à petit la portée du voisinage
  8. Répeter 2 à 7 pour un nombre d'itérations

Equations utilisées

pluspres.png

majgagnant.png

Avec Θ(t) la fonction de voisinage et L(t) le taux d'apprentissage :

Θ(t) = exp( -dist² / 2σ²(t)) et L(t) = L0 * exp(-t / λ)