Site Tools


Hotfix release available: 2025-05-14a "Librarian". upgrade now! [56.1] (what's this?)
New release available: 2025-05-14 "Librarian". upgrade now! [56] (what's this?)
Hotfix release available: 2024-02-06b "Kaos". upgrade now! [55.2] (what's this?)
Hotfix release available: 2024-02-06a "Kaos". upgrade now! [55.1] (what's this?)
New release available: 2024-02-06 "Kaos". upgrade now! [55] (what's this?)
Hotfix release available: 2023-04-04b "Jack Jackrum". upgrade now! [54.2] (what's this?)
Hotfix release available: 2023-04-04a "Jack Jackrum". upgrade now! [54.1] (what's this?)
New release available: 2023-04-04 "Jack Jackrum". upgrade now! [54] (what's this?)
Hotfix release available: 2022-07-31b "Igor". upgrade now! [53.1] (what's this?)
Hotfix release available: 2022-07-31a "Igor". upgrade now! [53] (what's this?)
New release available: 2022-07-31 "Igor". upgrade now! [52.2] (what's this?)
New release candidate 2 available: rc2022-06-26 "Igor". upgrade now! [52.1] (what's this?)
New release candidate available: 2022-06-26 "Igor". upgrade now! [52] (what's this?)
Hotfix release available: 2020-07-29a "Hogfather". upgrade now! [51.4] (what's this?)
memento-value-function-approximation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
memento-value-function-approximation [2025/06/06 13:33]
216.73.216.170 old revision restored (2025/04/17 08:35)
memento-value-function-approximation [2025/07/03 06:14] (current)
20.171.207.121 old revision restored (2025/07/01 10:14)
Line 8: Line 8:
    * Fourier    * Fourier
    * ...    * ...
 +
 +===Descente de gradient===
 +
 +Avec J(w), une fonction dérivable de paramètre w (w étant un vector contenant toutes les valeurs des états).
 +
 +Le gradient de J(w) est défini sous forme matricielle, [[http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching_files/FA.pdf | voir diapo 11]]
 +
 +Permet de trouver un minimum local J(w)
 +
 +Objectif : Trouver le paramètre w qui minimise le carré de l'erreur entre la valeur approximée et la vrai valeur.
 +
 +
 +Questions : 
 +   * Que représente Δw (une valeur, un vector, ...), et à quoi s'en sert-on ?
 +
 +===Représentation d'un état dans un vector===
 +
 +Ranger dans le vector les n valeurs du même état.
 +
 +===Fonction approximation de valeur linéaire===
 +(Linear Value Function Approximation)
 +
 +   * La descente de gradient stochastique converge vers un optimum global.
 +   * Actualisation = step-size * prediction error * feature value
 +
 +Questions : 
 +   * Qu'est ce qu'on appelle une feature ?
 +
  
  
  
  
memento-value-function-approximation.1749209605.txt.gz · Last modified: 2025/06/06 13:33 by 216.73.216.170